Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.050
Filtrar
2.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659058

RESUMO

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Assuntos
Micropartículas Derivadas de Células , Células Dendríticas , Inflamação , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Camundongos , Inflamação/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Vesículas Extracelulares , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Sepse/imunologia , Sepse/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Humanos , Imunoterapia/métodos
3.
Iran J Kidney Dis ; 18(2): 99-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38660698

RESUMO

INTRODUCTION: We recently discovered that microvesicles (MVs)  derived from mesenchymal stem cells (MSCs) overexpressing  miRNA-34a can alleviate experimental kidney injury in mice. In  this study, we further explored the effects of miR34a-MV on renal  fibrosis in the unilateral ureteral obstruction (UUO) models.  Methods. Bone marrow MSCs were modified by lentiviruses  overexpressing miR-34a, and MVs were collected from the  supernatants of MSCs. C57BL6/J mice were divided into control,  unilateral ureteral obstruction (UUO), UUO + MV, UUO + miR-34aMV and UUO + miR-34a-inhibitor-MV groups. MVs were injected  to mice after surgery. The mice were then euthanized on day 7  and 14 of modeling, and renal tissues were collected for further  analyses by Hematoxylin and eosin, Masson's trichrome,  and Immunohistochemical (IHC) staining.  Results. The UUO + MV group exhibited a significantly reduced  degree of renal interstitial fibrosis with inflammatory cell infiltration,  tubular epithelial cell atrophy, and vacuole degeneration compared  with the UUO group. Surprisingly, overexpressing miR-34a enhanced  these effects of MSC-MV on the UUO mice.  Conclusion. Our study demonstrates that miR34a further enhances  the effects of MSC-MV on renal fibrosis in mice through the  regulation of epithelial-to-mesenchymal transition (EMT) and  Notch pathway. miR-34a may be a candidate molecular therapeutic  target for the treatment of renal fibrosis. DOI: 10.52547/ijkd.7673.


Assuntos
Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fibrose , Rim , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , MicroRNAs , Obstrução Ureteral , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Obstrução Ureteral/terapia , Transição Epitelial-Mesenquimal/genética , Rim/patologia , Rim/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Masculino , Nefropatias/patologia , Nefropatias/terapia , Nefropatias/metabolismo , Nefropatias/genética , Camundongos , Transplante de Células-Tronco Mesenquimais , Transdução de Sinais
4.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393026

RESUMO

Chondrosia reniformis is a collagen-rich marine sponge that is considered a sustainable and viable option for producing an alternative to mammalian-origin collagens. However, there is a lack of knowledge regarding the properties of collagen isolated from different sponge parts, namely the outer region, or cortex, (ectosome) and the inner region (choanosome), and how it affects the development of biomaterials. In this study, a brief histological analysis focusing on C. reniformis collagen spatial distribution and a comprehensive comparative analysis between collagen isolated from ectosome and choanosome are presented. The isolated collagen characterization was based on isolation yield, Fourier-transformed infrared spectroscopy (FTIR), circular dichroism (CD), SDS-PAGE, dot blot, and amino acid composition, as well as their cytocompatibility envisaging the development of future biomedical applications. An isolation yield of approximately 20% was similar for both sponge parts, as well as the FTIR, CD, and SDS-PAGE profiles, which demonstrated that both isolated collagens presented a high purity degree and preserved their triple helix and fibrillar conformation. Ectosome collagen had a higher OHpro content and possessed collagen type I and IV, while the choanosome was predominately constituted by collagen type IV. In vitro cytotoxicity assays using the L929 fibroblast cell line displayed a significant cytotoxic effect of choanosome collagen at 2 mg/mL, while ectosome collagen enhanced cell metabolism and proliferation, thus indicating the latter as being more suitable for the development of biomaterials. This research represents a unique comparative study of C. reniformis body parts, serving as a support for further establishing this marine sponge as a promising alternative collagen source for the future development of biomedical applications.


Assuntos
Micropartículas Derivadas de Células , Poríferos , Animais , Micropartículas Derivadas de Células/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Poríferos/metabolismo , Colágeno/química , Colágeno Tipo I/metabolismo , Mamíferos/metabolismo
5.
Biomater Sci ; 12(5): 1131-1150, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38284828

RESUMO

Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.


Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Vesículas Extracelulares/química , Neoplasias/tratamento farmacológico , Membrana Celular
6.
Oncoimmunology ; 13(1): 2304963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235317

RESUMO

Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvß3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvß3 may play an important role in immune cells. However, the expression and potential role of integrin αvß3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin ß3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin ß3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin ß3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin ß3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin ß3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Humanos , Integrina beta3/metabolismo , Integrina beta3/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Integrina alfaVbeta3/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Linfócitos T , Microambiente Tumoral
7.
Mol Cancer Res ; 22(3): 268-281, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085263

RESUMO

An increasing number of studies show that platelets as well as platelet-derived microparticles (PMP) play significant roles in cancer malignancy and disease progression. Particularly, PMPs have the capacity to interact and internalize within target cells resulting in the transfer of their bioactive cargo, which can modulate the signaling and activation processes of recipient cells. We recently identified a new subpopulation of these vesicles (termed mitoMPs), which contain functional mitochondria. Given the predominant role of mitochondria in cancer cell metabolism and disease progression, we set out to investigate the impact of mitoMPs on breast cancer metabolic reprograming and phenotypic processes leading to malignancy. Interestingly, we observed that recipient cell permeability to PMP internalization varied among the breast cancer cell types evaluated in our study. Specifically, cells permissive to mitoMPs acquire mitochondrial-dependent functions, which stimulate increased cellular oxygen consumption rates and intracellular ATP levels. In addition, cancer cells co-incubated with PMPs display enhanced malignant features in terms of migration and invasion. Most importantly, the cancer aggressive processes and notable metabolic plasticity induced by PMPs were highly dependent on the functional status of the mitoMP-packaged mitochondria. These findings characterize a new mechanism by which breast cancer cells acquire foreign mitochondria resulting in the gain of metabolic processes and malignant features. A better understanding of these mechanisms may provide therapeutic opportunities through PMP blockade to deprive cancer cells from resources vital in disease progression. IMPLICATIONS: We show that the transfer of foreign mitochondria by microparticles modulates recipient cancer cell metabolic plasticity, leading to greater malignant processes.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Humanos , Feminino , Neoplasias da Mama/metabolismo , Micropartículas Derivadas de Células/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Progressão da Doença
8.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958844

RESUMO

Mesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid. The phenotype of cells was characterized using flow cytometry, real-time RT-PCR, and immunofluorescence staining. The effect of HATMSC2-MVs on the biological activity of primary cells was analyzed in 2D (proliferation, migration, and cell survival) and 3D (cell survival) models. We demonstrated that HATMSC2-MVs internalized into primary ovarian cancer cells decrease the metabolic activity and induce the cancer cell death and are leading to decreased migratory activity of tumor cells. The results suggests that the anti-cancer effect of HATMSC2-MVs, with high probability, is contributed by the delivery of molecules that induce cell cycle arrest and apoptosis (p21, tumor suppressor p53, executor caspase 3) and proapoptotic regulators (bad, BIM, Fas, FasL, p27, TRAIL-R1, TRAIL-R2), and their presence has been confirmed by apoptotic protein antibody array. In this study, we demonstrate the ability to inhibit primary OvCa cells growth and apoptosis induction after exposure of OvCa cells on HATMSC2-MVs treatment; however, further studies are needed to clarify their anticancer activities.


Assuntos
Micropartículas Derivadas de Células , Células-Tronco Mesenquimais , Neoplasias Ovarianas , Humanos , Feminino , Células-Tronco Mesenquimais/metabolismo , Apoptose , Tecido Adiposo , Neoplasias Ovarianas/metabolismo , Micropartículas Derivadas de Células/metabolismo
9.
Cell Rep Med ; 4(12): 101303, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38029750

RESUMO

The inadequate activation of antigen-presenting cells, the entanglement of T cells, and the highly immunosuppressive conditions in the tumor microenvironment (TME) are important factors that limit the effectiveness of cancer vaccines. Studies show that a personalized and broad antigen repertoire fully activates anti-tumor immunity and that inhibiting the function of transforming growth factor (TGF)-ß facilitates T cell migration. In our study, we introduce a vaccine strategy by engineering irradiated tumor cell-derived microparticles (RT-MPs), which have both personalized and broad antigen repertoire, to induce comprehensive anti-tumor effects. Encouraged by the proinflammatory effects of the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the high affinity between TGF-ß receptor 2 (TGFBR2) and TGF-ß, we develop RT-MPs with the SARS-CoV-2 spike protein and TGFBR2. This spike protein and high TGFBR2 expression induce the innate immune response and ameliorate the immunosuppressive TME, thereby promoting T cell activation and infiltration and ultimately inhibiting tumor growth. Our study provides a strategy for producing an effective personalized anti-tumor vaccine.


Assuntos
Vacinas Anticâncer , Micropartículas Derivadas de Células , Neoplasias , Humanos , Glicoproteína da Espícula de Coronavírus , Receptor do Fator de Crescimento Transformador beta Tipo II , Micropartículas Derivadas de Células/metabolismo , Neoplasias/terapia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
10.
Drug Discov Today ; 28(11): 103791, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777169

RESUMO

Prostate cancer (PCa) is the second most common and fifth most aggressive neoplasm among men worldwide. In the last decade, extracellular vesicle (EV) research has decoded multiple unsolved cancer-related mysteries. EVs can be classified as microvesicles, apoptotic bodies, and exosomes, among others. Exosomes play a key role in cellular signaling. Their internal cargos (nucleic acids, proteins, lipids) influence the recipient cell. In PCa, the exosome is the regulator of cancer progression. It is also a promising theranostics tool for PCa. Moreover, exosomes have strong participation in male fertility complications. This review aims to highlight the exosome theranostics signature in PCa and its association with male fertility.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Neoplasias da Próstata , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , Fertilidade
11.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569299

RESUMO

Aside from their key protective roles in hemostasis and innate immunity, platelets are now recognized as having multifaceted, adverse roles in the pathogenesis, progression and outcome of many types of human malignancy. The most consistent and compelling evidence in this context has been derived from the notable association of elevated circulating platelet counts with the onset and prognosis of various human malignancies, particularly lung cancer, which represents the primary focus of the current review. Key topics include an overview of the association of lung cancer with the circulating platelet count, as well as the mechanisms of platelet-mediated, pro-tumorigenic immunosuppression, particularly the role of transforming growth factor beta 1. These issues are followed by a discussion regarding the pro-tumorigenic role of platelet-derived microparticles (PMPs), the most abundant type of microparticles (MPs) in human blood. In this context, the presence of increased levels of PMPs in the blood of lung cancer patients has been associated with tumor growth, invasion, angiogenesis and metastasis, which correlate with disease progression and decreased survival times. The final section of the review addresses, firstly, the role of cancer-related platelet activation and thrombosis in the pathogenesis of secondary cardiovascular disorders and the associated mortality, particularly in lung cancer, which is second only to disease progression; secondly, the review addresses the potential role of antiplatelet agents in the adjunctive therapy of cancer.


Assuntos
Micropartículas Derivadas de Células , Neoplasias Pulmonares , Trombose , Humanos , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Trombose/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinogênese/metabolismo , Progressão da Doença
12.
Nanoscale Horiz ; 8(8): 1034-1042, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37435728

RESUMO

Extracellular vesicles (EVs), including nanoscale exosomes and ectosomes, hold promise as biomarkers that provide information about the cell of origin through their cargo of nucleic acids and proteins, both on their surface and within. Here, we develop a detection method of EVs based on light-induced acceleration of specific binding between their surface and antibody-modified microparticles, using a controlled microflow with three-dimensional analysis by confocal microscopy. Our method successfully detected 103-104 nanoscale EVs in liquid samples as small as a 500 nanoliters within 5 minutes, with the ability to distinguish multiple membrane proteins. Remarkably, we achieved the specific detection of EVs secreted from living cancer cell lines with high linearity, without the need for a time-consuming ultracentrifugation process that can take several hours. Furthermore, the detection range can be controlled by adjusting the action range of optical force using a defocused laser, consistent with the theoretical calculations. These findings demonstrate an ultrafast, sensitive, and quantitative approach for measuring biological nanoparticles, enabling innovative analyses of cell-to-cell communication and early diagnosis of various diseases, including cancer.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Anticorpos/metabolismo
13.
Front Immunol ; 14: 1207631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441073

RESUMO

Background: It is well established that inflammation and platelets promote multiple processes of cancer malignancy. Recently, platelets have received attention for their role in carcinogenesis through the production of microvesicles or platelet-derived microparticles (PMPs), which transfer their biological content to cancer cells. We have previously characterized a new subpopulation of these microparticles (termed mito-microparticles), which package functional mitochondria. The potential of mitochondria transfer to cancer cells is particularly impactful as many aspects of mitochondrial biology (i.e., cell growth, apoptosis inhibition, and drug resistance) coincide with cancer hallmarks and disease progression. These metabolic aspects are particularly notable in chronic lymphocytic leukemia (CLL), which is characterized by a relentless accumulation of proliferating, immunologically dysfunctional, mature B-lymphocytes that fail to undergo apoptosis. The present study aimed to investigate the role of PMPs on CLL metabolic plasticity leading to cancer cell phenotypic changes. Methods: CLL cell lines were co-incubated with different concentrations of human PMPs, and their impact on cell proliferation, mitochondrial DNA copy number, OCR level, ATP production, and ROS content was evaluated. Essential genes involved in metabolic-reprogramming were identified using the bioinformatics tools, examined between patients with early and advanced CLL stages, and then validated in PMP-recipient CLLs. Finally, the impact of the induced metabolic reprogramming on CLLs' growth, survival, mobility, and invasiveness was tested against anti-cancer drugs Cytarabine, Venetoclax, and Plumbagin. Results: The data demonstrated the potency of PMPs in inducing tumoral growth and invasiveness in CLLs through mitochondrial internalization and OXPHOS stimulation which was in line with metabolic shift reported in CLL patients from early to advanced stages. This metabolic rewiring also improved CLL cells' resistance to Cytarabine, Venetoclax, and Plumbagin chemo drugs. Conclusion: Altogether, these findings depict a new platelet-mediated pathway of cancer pathogenesis. We also highlight the impact of PMPs in CLL metabolic reprogramming and disease progression.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Micropartículas Derivadas de Células/metabolismo , Antineoplásicos/uso terapêutico , Progressão da Doença , Citarabina/metabolismo , Citarabina/uso terapêutico
14.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443741

RESUMO

Extracellular vesicles (EVs), comprising microvesicles (MVs) and exosomes (Exos), are membranous vesicles secreted by cells which mediate the repair of cellular and tissue damage via paracrine mechanisms. The action of EVs under normative and morbid conditions in the context of ageing remains largely unexplored. We demonstrate that MVs, but not Exos, from Pathfinder cells (PCs), a putative stem cell regulatory cell type, enhance the repair of human dermal fibroblast (HDF) and mesenchymal stem cell (MSC) co-cultures, following both mechanical and genotoxic stress. Critically, this effect was found to be both cellular age and stress specific. Notably, MV treatment was unable to repair mechanical injury in older co-cultures but remained therapeutic following genotoxic stress. These observations were further confirmed in human dermal fibroblast (HDF) and vascular smooth muscle cell (VSMC) co-cultures of increasing cellular age. In a model of comorbidity comprising co-cultures of HDFs and highly senescent abdominal aortic aneurysm (AAA) VSMCs, MV administration appeared to be senotherapeutic, following both mechanical and genotoxic stress. Our data provide insights into EVs and the specific roles they play during tissue repair and ageing. These data will potentiate the development of novel cell-free therapeutic interventions capable of attenuating age-associated morbidities and avoiding undesired effects.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Humanos , Idoso , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Senescência Celular , Cicatrização
15.
Curr Opin Hematol ; 30(5): 180-185, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522480

RESUMO

PURPOSE OF REVIEW: Cancer-associated thrombosis (CAT), such as venous thromboembolism (VTE), is a frequent complication in cancer patients, resulting in poor prognosis. Breast cancer is not highly thrombogenic but is highly prevalent, resulting in increased VTE cases. Many cancers express tissue factor (TF), a glycoprotein that triggers coagulation. The cancer cells were shown to express and release substantial amounts of TF-positive microparticles (MPTF), associated with a prothrombotic state. This narrative review evaluated the current use of the procoagulant MPTF as a biomarker for thrombosis risk in breast cancer. RECENT FINDINGS: Tumors of epithelial origin with elevated TF expression have been associated with increased VTE incidence. Thus, studies have affirmed the use of MPTF biomarkers for VTE risk in many cancers. Patients with metastatic breast cancer and CAT were found to exhibit elevated procoagulant microparticles in vitro, due to TF expression. The silencing of TF was associated with decreased microparticle release in breast carcinoma cell lines, associated with decreased coagulation. SUMMARY: CAT is a multifactorial condition, with several various underlying diseases. It is proposed that MPTF may be an effective biomarker for thrombosis risk in breast cancer patients but requires a more systemic evaluation utilizing standardized quantification methods.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Neoplasias , Trombose , Tromboembolia Venosa , Humanos , Feminino , Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiologia , Tromboplastina/metabolismo , Trombose/etiologia , Neoplasias/metabolismo , Biomarcadores/metabolismo , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia
16.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511561

RESUMO

There has been increasing interest in the study of new pathogenic mechanisms in endometriosis (END), including the coagulation/fibrinolysis system and its link with inflammation and tissue remodeling. It has been suggested that END patients, especially with deep-infiltrating (DE) forms, could present a hypercoagulable state revealing higher levels of proinflammatory and procoagulant markers, such as total circulating microparticles (cMPs) and cMP-TF (tissue factor), released by cells in response to damage, activation, or apoptosis. However, no previous study has assessed the effect of END hormonal treatments on cMP and cMP-TF levels. Therefore, the aim of this study was to evaluate the impact of these treatments on cMP and cMP-TF levels in DE patients. Three groups were compared: DE patients receiving a continuous combined oral contraceptive regimen (CCOCR) (n = 41), DE patients without CCOCR (n = 45), and a control group (n = 43). cMP and cMP-TF levels were evaluated in platelet-free plasma. A significant decrease in the total cMP levels was found in the DE group with CCOCR versus the group without CCOCR, reflecting a higher chronic inflammatory status in DE patients that decreased with the treatment. cMP-TF levels were higher in DE patients receiving CCOCR versus those not receiving CCOCR, suggesting that treatments containing estrogens play a predominant role in suppressing the inhibitory pathway of TF.


Assuntos
Micropartículas Derivadas de Células , Endometriose , Feminino , Humanos , Endometriose/patologia , Etinilestradiol , Norpregnenos/metabolismo , Coagulação Sanguínea , Tromboplastina/metabolismo , Inflamação/metabolismo , Micropartículas Derivadas de Células/metabolismo
17.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373420

RESUMO

Extracellular microparticles provide a means of cell-to-cell communication and can promote information exchanges between adjacent or distant cells. Platelets are cell fragments that are derived from megakaryocytes. Their main functions are to stop bleeding, regulate inflammation, and maintain the integrity of blood vessels. When platelets are activated, they can perform related tasks by secreting platelet-derived microparticles that contain lipids, proteins, nucleic acids, and even organelles. There are differences in the circulating platelet levels in many autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid antibody syndrome, and Sjogren's syndrome. In this paper, the latest findings in the research field of platelet-derived microparticles are reviewed, including the potential pathogenesis of platelet-derived microparticles in various types of immune diseases, their potential as related markers, and for monitoring the progress and prognosis of disease treatment are expounded.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Micropartículas Derivadas de Células , Lúpus Eritematoso Sistêmico , Humanos , Micropartículas Derivadas de Células/metabolismo , Doenças Autoimunes/metabolismo , Plaquetas/metabolismo , Artrite Reumatoide/metabolismo , Megacariócitos/patologia
18.
Sci Rep ; 13(1): 9963, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339980

RESUMO

The skin undergoes the formation of fine lines and wrinkles through the aging process; also, burns, trauma, and other similar circumstances give rise to various forms of skin ulcers. Induced pluripotent stem cells (iPSCs) have become promising candidates for skin healing and rejuvenation due to not stimulating inflammatory responses, low probability of immune rejection, high metabolic activity, good large-scale production capacity and potentials for personalized medicine. iPSCs can secrete microvesicles (MVs) containing RNA and proteins responsible for the normal repairing process of the skin. This study aimed to evaluate the possibility, safety and effectiveness of applying iPSCs-derived MVs for skin tissue engineering and rejuvenation applications. The possibility was assessed using the evaluation of the mRNA content of iPSC-derived MVs and the behavior of fibroblasts after MV treatment. Investigating the effect of microvesicle on stemness potential of mesenchymal stem cells was performed for safety concerns. In vivo evaluation of MVs was done in order to investigate related immune response, re-epithelialization and blood vessel formation to measure effectiveness. Shedding MVs were round in shape distributed in the range from 100 to 1000 nm in diameter and positive for AQP3, COL2A, FGF2, ITGB, and SEPTIN4 mRNAs. After treating dermal fibroblasts with iPSC-derived MVs, the expressions of collagens Iα1 and III transcripts (as the main fibrous extracellular matrix (ECM) proteins) were upregulated. Meanwhile, the survival and proliferation of MV treated fibroblasts did not change significantly. Evaluation of stemness markers in MV treated MSCs showed negligible alteration. In line with in vitro results, histomorphometry and histopathology findings also confirmed the helpful effect of MVs in skin regeneration in the rat burn wound models. Conducting more investigations on hiPSCs-derived MVs may lead to produce more efficient and safer biopharmaceutics for skin regeneration in the pharmaceutical market.


Assuntos
Micropartículas Derivadas de Células , Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Rejuvenescimento , Pele/patologia , Micropartículas Derivadas de Células/metabolismo
19.
J Appl Physiol (1985) ; 135(2): 271-278, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348012

RESUMO

The aim of this study was to determine the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. Circulating EMVs (CD144-PE) were isolated (flow cytometry) from 27 young adults (19-25 yr): 10 nonsmokers (6 M/4 F), 10 e-cigarette users (6 M/4 F), and 7 tobacco cigarette smokers (4 M/3 F). hCMECs were cultured and treated with isolated EMVs for 24 h. EMVs from e-cigarette users and cigarette smokers induced significantly higher expression of p-eNOS (Thr495; 28.4 ± 4.6 vs. 29.1 ± 2.8 vs. 22.9 ± 3.8 AU), Big ET-1 (138.8 ± 19.0 vs. 141.7 ± 19.1 vs. 90.3 ± 18.8 AU) and endothelin converting enzyme (107.6 ± 10.1 and 113.5 ± 11.8 vs. 86.5 ± 13.2 AU), and significantly lower expression of p-eNOS (Ser1177; 7.4 ± 1.7 vs. 6.5 ± 0.5 vs. 9.7 ± 1.6 AU) in hCMECs than EMVs from nonsmokers. NO production was significantly lower and ET-1 production was significantly higher in hCMECs treated with EMVs from e-cigarette (5.7 ± 0.8 µmol/L; 33.1 ± 2.9 pg/mL) and cigarette smokers (6.3 ± 0.7 µmol/L; 32.1 ± 3.9 pg/mL) than EMVs from nonsmokers (7.6 ± 1.2 µmol/L; 27.9 ± 3.1 pg/mL). t-PA release in response to thrombin was significantly lower in hCMECs treated with EMVs from e-cigarette users (from 38.8 ± 6.3 to 37.4 ± 8.3 pg/mL) and cigarette smokers (31.5 ± 5.5 to 34.6 ± 8.4 pg/mL) than EMVs from nonsmokers (38.9 ± 4.3 to 48.4 ± 7.9 pg/mL). There were no significant differences in NO, ET-1, or t-PA protein expression or production in hCMECs treated with EMVs from e-cigarette users and smokers. Circulating EMVs associated with e-cigarette use adversely affects brain microvascular endothelial cells and may contribute to reported cerebrovascular dysfunction with e-cigarette use.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. EMVs from e-cigarette users reduced brain microvascular endothelial cell NO production, enhanced ET-1 production, and impaired endothelial t-PA release. EMVs are a potential mediating factor in the increased risk of stroke associated with e-cigarette use.


Assuntos
Micropartículas Derivadas de Células , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Adulto Jovem , Humanos , Células Endoteliais/metabolismo , Vaping/efeitos adversos , Ativador de Plasminogênio Tecidual/metabolismo , Óxido Nítrico/metabolismo , Micropartículas Derivadas de Células/metabolismo
20.
J Pathol ; 260(5): 592-608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294158

RESUMO

Extracellular vesicles (EVs) are lipid bilayer-enclosed subcellular bodies produced by most, if not all cells. Research over the last two decades has recognised the importance of EVs in intercellular communication and horizontal transfer of biological material. EVs range in diameter from tens of nanometres up to several micrometres and are able to transfer a spectrum of biologically active cargoes - from whole organelles, through macromolecules including nucleic acids and proteins, to metabolites and small molecules - from their cells of origin to recipient cells, which may consequently become physiologically or pathologically altered. Based on their modes of biogenesis, the most renowned EV classes are (1) microvesicles, (2) exosomes (both produced by healthy cells), and (3) EVs from cells undergoing regulated death by apoptosis (ApoEVs). Microvesicles bud directly from the plasma membrane, while exosomes are derived from endosomal compartments. Current knowledge of the formation and functional properties of ApoEVs lags behind that of microvesicles and exosomes, but burgeoning evidence indicates that ApoEVs carry manifold cargoes, including mitochondria, ribosomes, DNA, RNAs, and proteins, and perform diverse functions in health and disease. Here we review this evidence, which demonstrates substantial diversity in the luminal and surface membrane cargoes of ApoEVs, permitted by their very broad size range (from around 50 nm to >5 µm; the larger often termed apoptotic bodies), strongly suggests their origins through both microvesicle- and exosome-like biogenesis pathways, and indicates routes through which they interact with recipient cells. We discuss the capacity of ApoEVs to recycle cargoes and modulate inflammatory, immunological, and cell fate programmes in normal physiology and in pathological scenarios such as cancer and atherosclerosis. Finally, we provide a perspective on clinical applications of ApoEVs in diagnostics and therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Neoplasias/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...